Gauge Theories in Particle Physics
Volume I: From Relativistic Quantum Mechanics to QED, Third Edition
Creator  
Publisher 
20020901

ISBN  9780849387753, 0849387752,

Language 
English

Category  
Subject  Feynman diagrams. Feynman diagrams.  fast  (OCoLC)fst00923541 Gauge fields (Physics) Gauge fields (Physics)  fast  (OCoLC)fst00938995 Particles (Nuclear physics) Particles (Nuclear physics)  fast  (OCoLC)fst01054130 Quantum electrodynamics. Quantum electrodynamics.  fast  (OCoLC)fst01085098 SCIENCE  Waves & Wave Mechanics.  bisacsh Weak interactions (Nuclear physics) Weak interactions (Nuclear physics)  fast  (OCoLC)fst01172969 
Description
Gauge Theories in Particle Physics, Volume 1: From Relativistic Quantum Mechanics to QED, Third Edition presents an accessible, practical, and comprehensive introduction to the three gauge theories of the standard model of particle physics: quantum electrodynamics (QED), quantum chromodynamics (QCD), and the electroweak theory. For each of them, the authors provide a thorough discussion of the main conceptual points, a detailed exposition of many practical calculations of physical quantities, and a comparison of these quantitative predictions with experimental results. For this twovolume third edition, much of the book has been rewritten to reflect developments over the last decade, both in the curricula of university courses and in particle physics research. Substantial new material has been introduced that is intended for use in undergraduate physics courses. New introductory chapters provide a precise historical account of the properties of quarks and leptons, and a qualitative overview of the quantum field description of their interactions, at a level appropriate to third year courses. The chapter on relativistic quantum mechanics has been enlarged and is supplemented by additional sections on scattering theory and Green functions, in a form appropriate to fourth year courses. Since precision experiments now test the theories beyond lowest order in perturbation theory, an understanding of the data requires a more sophisticated knowledge of quantum field theory, including ideas of renormalization. The treatment of quantum field theory has therefore been considerably extended so as to provide a uniquely accessible and selfcontained introduction to quantum field dynamics, as described by Feynman graphs. The level is suitable for advanced fourth year undergraduates and first year graduates. These developments are all contained in the first volume, which ends with a discussion of higher order corrections in QED; the second volume is devoted to the nonAbelian gauge theories of QCD and the electroweak theory. As in the first two editions, emphasis is placed throughout on developing realistic calculations from a secure physical and conceptual basis.